This function performs Bayesian Aldrich-McKelvey (BAM) scaling using JAGS to estimate ideal points and optionally save intermediate parameters.
Usage
BAM(
data,
polarity,
zhatSave = TRUE,
abSave = FALSE,
resp.idealpts = FALSE,
n.sample = 2500,
...
)
Arguments
- data
A dataset prepared using the
bamPrep
function.- polarity
Integer specifying the column number of the stimulus used to set the polarity.
- zhatSave
Logical, whether to save the posterior samples of
zhat
(default is TRUE).- abSave
Logical, whether to save the posterior samples of
a
andb
parameters (default is FALSE).- resp.idealpts
Logical, whether to compute and save respondent ideal points (default is FALSE).
- n.sample
Integer, the number of MCMC samples to draw (default is 2500).
- ...
Additional arguments passed to
jags.model
.
Examples
if (FALSE) { # \dontrun{
data(bamdata)
bam.france <- BAM(bamdata, polarity=2, n.adapt=2500, n.sample=5000,
zhatSave=TRUE, abSave=TRUE, resp.idealpts=TRUE)
} # }